The evolution of the marine carbonate manufacturing unit

Ridgwell, A. & Zeebe, R. E. The function of the worldwide carbonate cycle within the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).

Isson, T. T. et al. Evolution of the worldwide carbon cycle and local weather regulation on Earth. International Biogeochem. Cycles 34, 1–28 (2020).

Wilkinson, B. H. & Walker, J. C. G. Phanerozoic biking of sedimentary carbonate. Am. J. Sci. 289, 525–548 (1989).

Ridgwell, A. A Mid Mesozoic Revolution within the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005).

Higgins, J. A., Fischer, W. W. & Schrag, D. P. Oxygenation of the ocean and sediments: penalties for the seafloor carbonate manufacturing unit. Earth Planet. Sci. Lett. 284, 25–33 (2009).

James, N. P. & Jones, B. Origin of Carbonate Sedimentary Rocks (Wiley, 2015).

Schlager, W. Sedimentation charges and progress potential of tropical, cool-water and mud-mound carbonate programs. Geol. Soc. Spec. Publ. 178, 217–227 (2000).

Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the historical past of the worldwide carbon cycle. Science 339, 540–543 (2013).

Gilbert, P., Bergmann, Okay. & Knoll, A. H. Biomineralization: integrating mechanism and evolutionary historical past. Sci. Adv. 8, eabl9653 (2021).

Grotzinger, J. P. & James, N. P. in Carbonate Sedimentation and Diagenesis within the Evolving Precambrian World 3–20 (SEPM Society for Sedimentary Geology, 2000).

Cantine, M. D., Knol, A. H. & Bergmann, Okay. D. Carbonates earlier than skeletons: a database strategy. Earth-Sci. Rev. 201, 103065 (2020).

Simonson, B. M., Schubel, Okay. A. & Hassler, S. W. Carbonate sedimentology of the early Precambrian Hamersley Group of Western Australia. Precambrian Res. 60, 287–335 (1993).

Grotzinger, J. P. Geochemical mannequin for Proterozoic stromatolite decline. Am. J. Sci. 290, 80–103 (1990).

Vollstaedt, H. et al. The Phanerozoic δ88/86Sr document of seawater: new constraints on previous adjustments in oceanic carbonate fluxes. Geochim. Cosmochim. Acta 128, 249–265 (2014).

Wang, J., Jacobson, A. D., Sageman, B. B. & Hurtgen, M. T. Secure Ca and Sr isotopes help volcanically triggered biocalcification disaster throughout Oceanic Anoxic Occasion 1a. Geology 49, 515–519 (2021).

Paytan, A. et al. A 35-million-year document of seawater secure Sr isotopes reveals a fluctuating international carbon cycle. Science 371, 1346–1350 (2021).

Böhm, F. et al. Strontium isotope fractionation of planktic foraminifera and inorganic calcite. Geochim. Cosmochim. Acta 93, 300–314 (2012).

AlKhatib, M. & Eisenhauer, A. Calcium and strontium isotope fractionation in aqueous options as a operate of temperature and response fee; I. Calcite. Geochim. Cosmochim. Acta 209, 296–319 (2017).

Müller, M. N., Krabbenhöft, A., Vollstaedt, H., Brandini, F. P. & Eisenhauer, A. Secure isotope fractionation of strontium in coccolithophore calcite: affect of temperature and carbonate chemistry. Geobiology 16, 297–306 (2018).

Stevenson, E. I. et al. Controls on secure strontium isotope fractionation in coccolithophores with implications for the marine Sr cycle. Geochim. Cosmochim. Acta 128, 225–235 (2014).

Kalderon-Asael, B. et al. A lithium-isotope perspective on the evolution of carbon and silicon cycles. Nature 595, 394–398 (2021).

Banner, J. L. Software of the isotope and hint ingredient geochemistry of strontium to research of diagenesis in carbonate programs. Sedimentology 42, 805–824 (1995).

Shields, G. & Veizer, J. Precambrian marine carbonate isotope database: model 1.1. Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000266 (2002).

Wang, J. et al. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr geochemistry throughout the end-Permian mass extinction occasion. Geochim. Cosmochim. Acta 262, 143–165 (2019).

Wang, J., Jacobson, A. D., Sageman, B. B. & Hurtgen, M. T. δ44/40Ca-δ88/86Sr multi-proxy constrains main origin of Marinoan cap carbonates. Preprint at https://arxiv.org/abs/2204.02563 (2022).

Kump, L., Bralower, T. & Ridgwell, A. Ocean acidification in deep time. Oceanography 22, 94–107 (2009).

Moynier, F., Agranier, A., Hezel, D. C. & Bouvier, A. Sr secure isotope composition of Earth, the Moon, Mars, Vesta and meteorites. Earth Planet. Sci. Lett. 300, 359–366 (2010).

Dupraz, C. et al. Processes of carbonate precipitation in fashionable microbial mats. Earth-Sci. Rev. 96, 141–162 (2009).

Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of worldwide particle export from the floor ocean and biking by way of the ocean inside and on the seafloor. International Biogeochem. Cycles 21, GB4006 (2007).

Wright, V. P. & Cherns, L. Leaving no stone unturned: the suggestions between elevated biotic range and early diagenesis in the course of the Ordovician. J. Geol. Soc. 173, 241–244 (2016).

Laakso, T. A. & Schrag, D. P. The function of authigenic carbonate in Neoproterozoic carbon isotope excursions. Earth Planet. Sci. Lett. 549, 116534 (2020).

Blättler, C. L. & Higgins, J. A. Testing Urey’s carbonate–silicate cycle utilizing the calcium isotopic composition of sedimentary carbonates. Earth Planet. Sci. Lett. 479, 241–251 (2017).

Weiner, S. & Dove, P. M. An outline of biomineralization processes and the issue of the very important impact. Rev. Mineral. Geochem. 54, 1–29 (2003).

Ronov, A. B., Khain, V. E., Balukhovsky, A. N. & Seslavinsky, Okay. B. Quantitative evaluation of Phanerozoic sedimentation. Sediment. Geol. 25, 311–325 (1980).

Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical evaluation of the carbon isotope document from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).

Liu, C., Wang, Z. & Raub, T. D. Geochemical constraints on the origin of Marinoan cap dolostones from Nuccaleena Formation, South Australia. Chem. Geol. 351, 95–104 (2013).

Wang, J., Asael, D., Planavsky, N. J. & Tarhan, L. G. An investigation of things affecting high-precision Sr isotope analyses (87Sr/86Sr and δ88/86Sr) by MC-ICP-MS. Preprint at https://arxiv.org/abs/2111.02942 (2021).

Ohno, T. & Hirata, T. Simultaneous dedication of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by a number of collector-ICP-mass spectrometry. Anal. Sci. 23, 1275–1280 (2007).

Ma, J. L. et al. Exact measurement of secure (δ88/86Sr) and radiogenic (87Sr/86Sr) strontium isotope ratios in geological normal reference supplies utilizing MC-ICP-MS. Chin. Sci. Bull. 58, 3111–3118 (2013).

Andrews, M. G., Jacobson, A. D., Lehn, G. O., Horton, T. W. & Craw, D. Radiogenic and secure Sr isotope ratios (87Sr/86Sr, δ88/86Sr) as tracers of riverine cation sources and biogeochemical biking within the Milford Sound area of Fiordland, New Zealand. Geochim. Cosmochim. Acta 173, 284–303 (2016).

Machel, H. G. in Cathodoluminescence in Geosciences 271–301 (Springer, 2000).

Bathurst, R. G. C. Carbonate Sediments and Their Diagenesis (Elsevier, 1972).

Model, U. & Veizer, J. Chemical diagenesis of a multicomponent carbonate system; 1, hint components. J. Sediment. Res. 50, 1219–1236 (1980).

Anderson, T. F. & Arthur, M. A. in Secure Isotopes in Sedimentary Geology (eds Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J. & Land, L. S.) (SEPM Society for Sedimentary Geology, 1983).

Richter, F. M. & DePaolo, D. J. Diagenesis and Sr isotopic evolution of seawater utilizing information from DSDP 590B and 575. Earth Planet. Sci. Lett. 90, 382–394 (1988).

Richter, F. M. & Liang, Y. The speed and penalties of Sr diagenesis in deep-sea carbonates. Earth Planet. Sci. Lett. 117, 553–565 (1993).

Holland, H., Holland, H. & Munoz, J. The coprecipitation of cations with CaCO 3 —II. The coprecipitation of Sr+2 with calcite between 90° and 100°C. Geochim. Cosmochim. Acta 28, 1287–1301 (1964).

Katz, A., Sass, E., Starinsky, A. & Holland, H. D. Strontium conduct within the aragonite-calcite transformation: an experimental research at 40–98°C. Geochim. Cosmochim. Acta 36, 481–496 (1972).

Kinsman, D. J. J. & Holland, H. D. The co-precipitation of cations with CaCO 3 —IV. The co-precipitation of Sr2+ with aragonite between 16° and 96°C. Geochim. Cosmochim. Acta 33, 1–17 (1969).

Derry, L. A., Kaufman, A. J. & Jacobsen, S. B. Sedimentary biking and environmental change within the Late Proterozoic: proof from secure and radiogenic isotopes. Geochim. Cosmochim. Acta 56, 1317–1329 (1992).

Cruse, A. M. & Lyons, T. W. Hint metallic information of regional paleoenvironmental variability in Pennsylvanian (Higher Carboniferous) black shales. Chem. Geol. 206, 319–345 (2004).

Sageman, B. B. et al. A story of shales: the relative roles of manufacturing, decomposition, and dilution within the accumulation of organic-rich strata, Center-Higher Devonian, Appalachian basin. Chem. Geol. 195, 229–273 (2003).

Piper, D. Z. & Calvert, S. E. A marine biogeochemical perspective on black shale deposition. Earth-Sci. Rev. 95, 63–96 (2009).

Banner, J. L. & Hanson, G. N. Calculation of simultaneous isotopic and hint ingredient variations throughout water-rock interplay with functions to carbonate diagenesis. Geochim. Cosmochim. Acta 54, 3123–3137 (1990).

Baker, P. A., Gieskes, J. M. & Elderfield, H. Diagenesis of carbonates in deep-sea sediments; proof from Sr/Ca ratios and interstitial dissolved Sr2+ information. J. Sediment. Res. 52, 71–82 (1982).

Chaudhuri, S. & Clauer, N. Strontium isotopic compositions and potassium and rubidium contents of formation waters in sedimentary basins: clues to the origin of the solutes. Geochim. Cosmochim. Acta 57, 429–437 (1993).

Stueber, A. M., Pushkar, P. & Hetherington, E. A. A strontium isotopic research of Smackover brines and related solids, southern Arkansas. Geochim. Cosmochim. Acta 48, 1637–1649 (1984).

McNutt, R. H., Frape, S. Okay., Fritz, P., Jones, M. G. & MacDonald, I. M. The 87Sr/86Sr values of Canadian Defend brines and fracture minerals with functions to groundwater mixing, fracture historical past, and geochronology. Geochim. Cosmochim. Acta 54, 205–215 (1990).

McNutt, R. H., Frape, S. Okay. & Fritz, P. Strontium isotopic composition of some brinesfrom the Precambrian Defend of Canada. Chem. Geol. 46, 205–215 (1984).

Wilcots, J., Gilbert, P. U. P. A. & Bergmann, Okay. D. Nanoscale crystal cloth of main Ediacaran dolomite. Preprint at ESS Open Archive https://doi.org/10.1002/essoar.10507750.1 (2021).

Ohno, T., Komiya, T., Ueno, Y., Hirata, T. & Maruyama, S. Willpower of 88Sr/86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of 87Sr/86Sr within the Neoproterozoic Doushantuo Formation. Gondwana Res. 14, 126–133 (2008).

Sawaki, Y. et al. Sr isotope tour throughout the Precambrian–Cambrian boundary within the Three Gorges space, South China. Gondwana Res. 14, 134–147 (2008).

Pearce, C. R. et al. Reassessing the secure (δ88/86Sr) and radiogenic (87Sr/86Sr) strontium isotopic composition of marine inputs. Geochim. Cosmochim. Acta 157, 125–146 (2015).